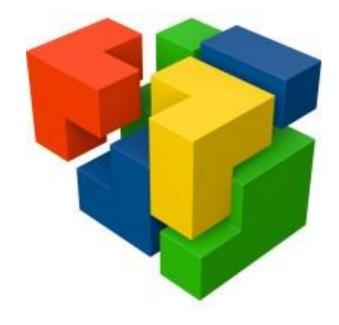


OSMOSES

Modularization and Qualification of complex PB-QSP models with OSP version 12

Pavel Balazki @OSP Community Conference 2024



OSMOSES

Modularization of PB-QSP projects as a solution for

- 1) Management of ever-growing model complexity
- 2) Model re-usability
- 3) Automated (re-)qualification

OSPS Version 12

Modularization of PB-QSP projects as a solution for

- 1) Management of ever-growing model complexity
- 2) Model re-usability
- 3) (Automated (re-)qualification)

Acknowledgements

Collaborators & Sponsors

sanofi

Acknowledgements

Collaborators & Sponsors

sanofi

Developers

○ Juri Solodenko

○ Michael Sevestre

DESIGN{2}CODE

- Robert McIntosh
- Benjamin Mariano Perez
- Abdel Rodriguez (former)
- Georgios Daskalakis (former)

Acknowledgements

Collaborators & Sponsors

sanofi

Model library contributors

University of Saarland, Clinical Pharmacy (Prof. Dr. Thorsten Lehr)

UNIVERSITÄT DES SAARLANDES

QSP model lifecycle

Need for new approaches

Model management through the entire lifecycle

Development, Qualification, and Application & Delivery

Model Development

Model Development

Biology and literature deep dive, model architecture and design, maths & stats formalization, implementation, parameter estimation

Parameter Database

• Same structure, different parameter sets for different use cases

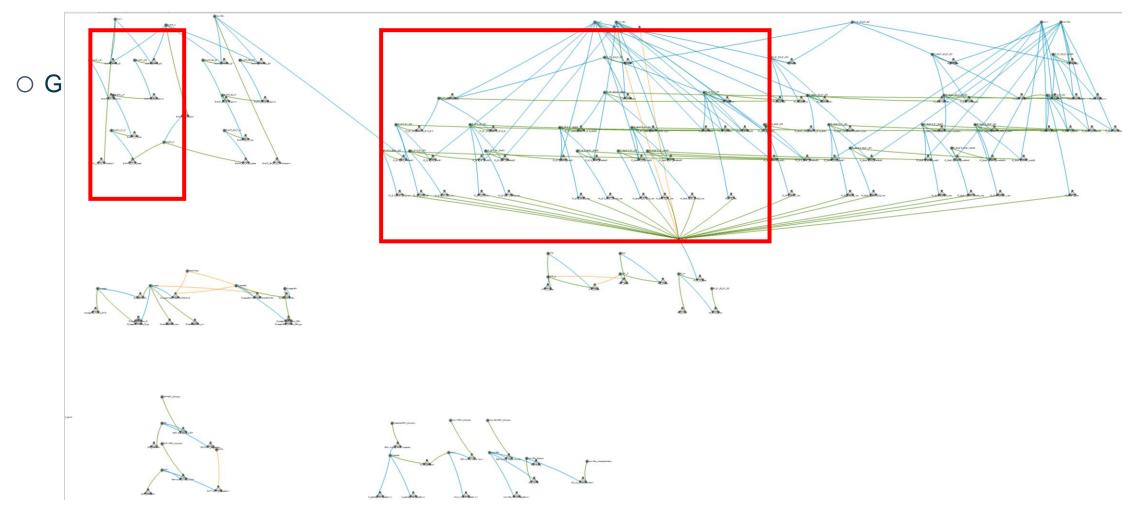
Module library

 Combination of available and new model structures

- Evaluation of model
 performance
- Requirement for automated Model Evaluation and Reporting Framework

Model Qualification

Model Application


- Distribution and
 Deployment
- Re-usability
- Maintenance

Problem: high model complexity

Growing model complexity makes maintenance and debugging challenging
 Both during model development and application

Problem: high model complexity

Example – Diabetes Platform

Problem: re-usability

- Growing model complexity makes maintenance and debugging challenging
- Models are developed for a specific use case with limited re-usability, or...

Problem: re-usability

- Growing model complexity makes maintenance and debugging challenging
- Models are developed for a specific use case with limited re-usability, or...
- $\odot\,$ Integration into new models is tedious and requires multiple manual steps

Problem: re-usability

 \odot Growing model comple

 \bigcirc Models are developed

○ Integration into new mo

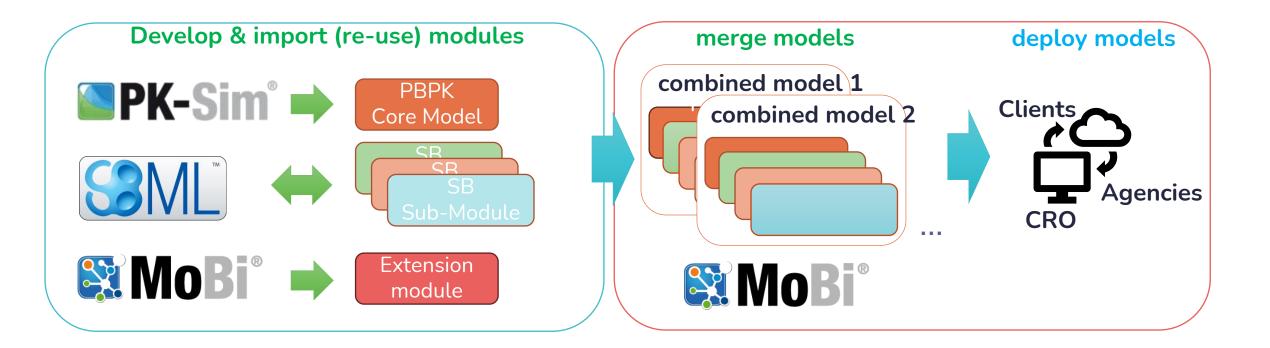
	🤮 AndreDIm Add files via upload 🚥	4f88e0f · 2 months ago	🕓 55 Commits
_	BuildingBlocks	Add files via upload	2 months ago
ple	CotyledonPerfusionModel	Adds in silico cotyledon perfusion model and updates READ	3 years ago
ed	Models	Adds acetaminophen pkml files	3 years ago
	ModelStructure.png	Corrected figure	3 years ago
m	MoleculeBB_FetalFractionUnbound.png	Updated README	3 years ago
	README.md	Update README.md	last year

Physiologically Based Pharmacokinetic Models for Pregnancy

Within this repository, we distribute the physiologically-based whole-body models for pregnant individuals published in [1,2,3,4,5,6,7]. Additionally, this repository contains the refined passive transports building block which was used to build pregnancy PBPK models with different unbound drug fractions in maternal and fetal organism as described in [8] as well as the *in silico* cotyledon perfusion model presented in [9].

0 i=

The pregnancy (and postpartum) PBPK model for amoxicillin published in [10] can be found here.


The pregnancy model structure comprises per default 27 compartments, including nine pregnancy-specific compartments as shown in the schema below.

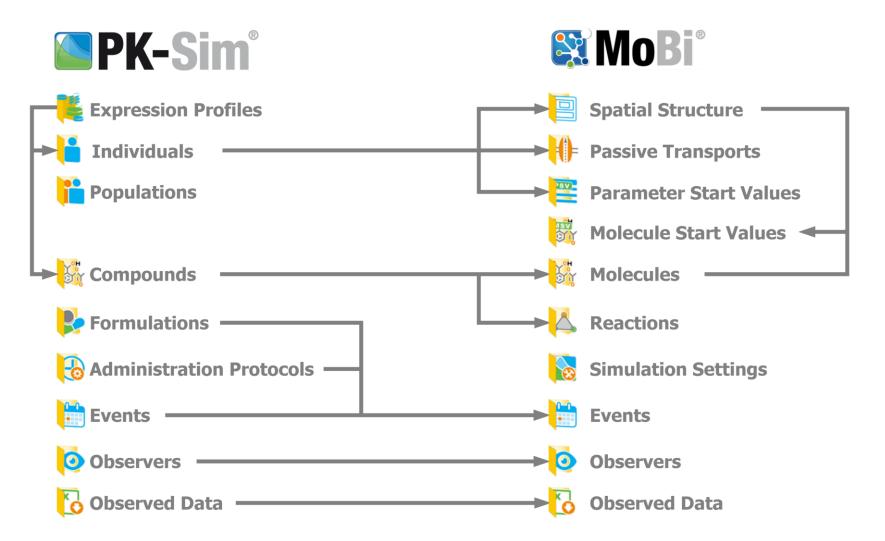
🛱 README

Problem: maintenance

- Growing model complexity makes maintenance and debugging challenging
- Models are developed for a specific use case with limited re-usability, or...
- Integration into new models is tedious and requires multiple manual steps
- Maintenance (e.g., update to new PK-Sim version)

The future of QSP Platform management - Modularization

Modularization

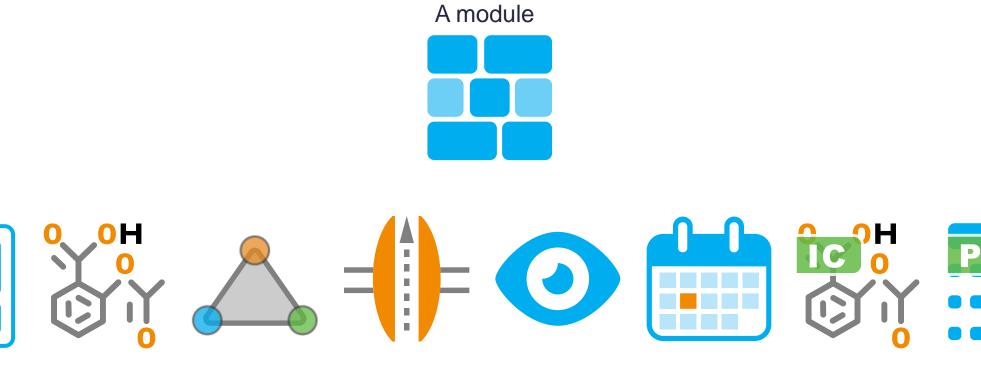

Implementation in OSPS v12

Version 12 is work in progress

Shown GUI and functionality may change in the final release

Status quo (<v12)

MoBi v12



V

MoBi v12

Spatial Structure

Molecules

Reactions

Passive Transports

Observers

Events

Initial Conditions Parameter Values

PK-Sim to MoBi transfer

- \odot One PK-Sim module
- Expression Profile(s)
- $\, \odot \,$ Individuals

🐵 🔂 🔽 🔹	MoBI@ 12	– 🗆 X
File Modeling Parameter Identification & Sensitivity Working Journal Impor	t/Export Utilities Views	^ 😮
Module Expression Individual Simulation Edit Save Load		
Create Simulation Settings		
The second secon	<	
V 📳 Modules		
✓ ☐ iv 0.05 mg/kg (2 min)		
Organism		
> X Molecules		
A Reaction		
= Passive Transports		
Observer		
Events		
> 💏 Initial Conditions		
> 📴 Parameter Values		
✓ L Expression Profiles		
CYP3A4 Human European (P-gp modified, CYP3A4 36 h)		
AADAC Human European (P-gp modified, CYP3A4 36 h)		
P-gp Human European (P-gp modified, CYP3A4 36 h)		
OATP1B1 Human European (P-gp modified, CYP3A4 36 h)		
ATP 1A2 Human European (P-gp modified, CYP 3A4 36 h)		
UGT1A4 Human European (P-gp modified, CYP3A4 36 h)		
SABRG2 Human European (P-gp modified, CYP3A4 36 h)		
v 皆 Individuals		
European (P-gp modified, CYP3A4 36 h)		
> 🐻 Observed Data		
Simulations □ # >	c	
V Simulations		
> 📐 iv 0.05 mg/kg (2 min)		
Rarameter Identifications		
Sensitivity Analyses		
Project: Undefined Amount based reactions		12 - Build 340

Individuals

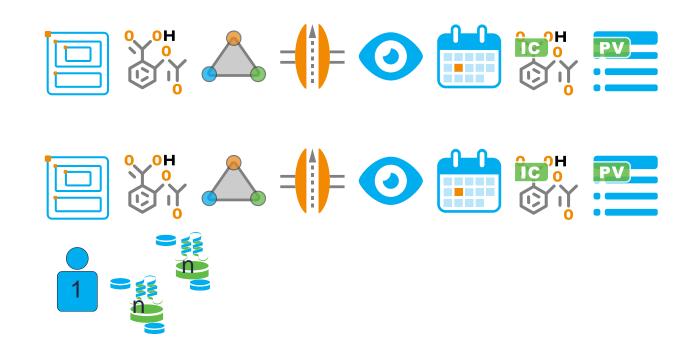
Population	Properti	es										
Species:		💽 Human										
opulation:		European (ICRP, 2002)										
Gender:		Vale										
Calculation methods:		Endothelial surface areas	on									
		Endothelial surface areas Organ vascularization Body surface area Mosteller										
Individual F	Paramet	ers										
Age:	30.00		year(s) -									
Weight:	73.00				kg 👻	Maria						
Height:	176.00				cm -	Mean						
BMI:	23.57				kg/m² -							
Value origin:												
					,							
Disease Sta	ite											
Healthy						-						
individuals ar	e parame	K-Sim are representative of the general popula terized under the assumption that they have n r drug disposition.	o chronic or comor	bid disease states th	icity antyor geographic a at would have a relevant	effect on						

meters 🔏 Formulas	nodified, CYP3A4 36 h) ×							
_								
in Data								
Species:	Human	Gender:	Male	Age:	30.0000 year(s)	Gestational age	2087.1429 week(s)	
Height:	176.0000 cm	Weight:	73.0000 kg	Population:	European (ICRP, 2002)	Endothelial surface areas	: Organ vascularization	
Body surface area:	Mosteller	PK-Sim Version:	12.0					
ameters								
a a columo beader berr	to group by that column							
Parameter Name	Path Element 0	Path Element 1	Path Element 2	Path Element 3	Value	Formula	Dimension	Value Origin
Ontogeny factor (albu						vailable> TableFormulaW		
Ontogeny factor (alph						vailable> TableFormulaV	-	
Ontogeny factor (alph						vailable> Ontogeny for o	-	
						vailable> Ontogeny for A		
						vailable> PARAM_BMI (H		Other-Standard definitio
Ontogeny factor (albumin Organism BMI Organism Post menstrual age Organism BSA Organism						vailable> PARAM PostM	-	
					<not av<="" td=""><td>/ailable> PARAM BSA (1</td><td></td><td></td></not>	/ailable> PARAM BSA (1		
pH (blood cells)	Organism					7.22 <not available<="" td=""><td>> Dimensionless</td><td>Publication-ICRP, 2002.</td></not>	> Dimensionless	Publication-ICRP, 2002.
pH (plasma)	Organism					7.40 <not available<="" td=""><td>> Dimensionless</td><td>Publication-ICRP, 2002.</td></not>	> Dimensionless	Publication-ICRP, 2002.
Age	Organism				30.00	year(s) <not available<="" td=""><td>> Age in years</td><td></td></not>	> Age in years	
Gestational age	Organism				40.00	week(s) <not available<="" td=""><td>> Age in weeks</td><td></td></not>	> Age in weeks	
Vf (lipid, plasma)	Organism					7.00E-3 <not available<="" td=""><td>> Dimensionless</td><td>Publication-ICRP, 2002.</td></not>	> Dimensionless	Publication-ICRP, 2002.
Vf (neutral lipid, plasm	a) Organism					3.20E-3 <not available<="" td=""><td>> Dimensionless</td><td>Publication-Rodgers T, R</td></not>	> Dimensionless	Publication-Rodgers T, R
Vf (protein,plasma)	Organism					0.07 <not available<="" td=""><td>> Dimensionless</td><td>Publication-ICRP, 2002.</td></not>	> Dimensionless	Publication-ICRP, 2002.
Vf (water,plasma)	Organism					0.93 <not available<="" td=""><td>> Dimensionless</td><td>Publication-ICRP, 2002.</td></not>	> Dimensionless	Publication-ICRP, 2002.
Surface/Volume ratio	blo Organism				16700	.00 1/cm <not available<="" td=""><td>> Inversed length</td><td>1</td></not>	> Inversed length	1
Vf (neutral lipid, plasm	a)-PT Organism					3.50E-3 <not available<="" td=""><td>> Dimensionless</td><td></td></not>	> Dimensionless	
Vf (neutral phospholip	d, Organism					2.10E-3 <not available<="" td=""><td>> Dimensionless</td><td>Publication-Rodgers T, R</td></not>	> Dimensionless	Publication-Rodgers T, R
Height	Organism				17	6.00 cm <not available<="" td=""><td>> Length</td><td></td></not>	> Length	
Vf (neutral lipid, blood	cell Organism					1.20E-3 <not available<="" td=""><td>> Dimensionless</td><td>Publication-Rodgers T, R</td></not>	> Dimensionless	Publication-Rodgers T, R
Vf (phospholipid, plasm	na) Organism					2.25E-3 <not available<="" td=""><td>> Dimensionless</td><td></td></not>	> Dimensionless	
Vf (neutral phospholip	d, Organism					3.30E-3 <not available<="" td=""><td>> Dimensionless</td><td>Publication-Rodgers T, R</td></not>	> Dimensionless	Publication-Rodgers T, R
Vf (water,plasma)-PT	Organism					0.95 <not available<="" td=""><td>> Dimensionless</td><td></td></not>	> Dimensionless	
Acidic phospholipids (b	loo Organism					0.57 <not available<="" td=""><td>> Dimensionless</td><td>Publication-Rodgers T, R</td></not>	> Dimensionless	Publication-Rodgers T, R
Vf (intracellular water,	bl Organism					0.63 <not available<="" td=""><td>> Dimensionless</td><td>Publication-Rodgers T, R</td></not>	> Dimensionless	Publication-Rodgers T, R
Hematocrit	Organism					0.47 <not available<="" td=""><td>> Dimensionless</td><td></td></not>	> Dimensionless	

Expression Profiles

pression Profile: CYP3A4 Human He											
rameters 💥 Initial Conditions 💡	A Formulas										
es: Human											
olizing enzyme: CYP3A4											atabas
Healthy											
Version: 12.0											
a column header here to group by	y that column										
Parameter Name	Path Element 0	Path Element 1	Path Element 2	Path Element 3	Path Element 4	Path Element 5	Value		Formula	Dimension	Value Origin
initial concentration	Organism	VenousBlood	Plasma	CYP3A4	Paul Lement 4	Paul Dement 5	Value	<not available<="" td=""><td> InitialConcentrationPlasma_Vascular. </td><td></td><td>Value Origin</td></not>	 InitialConcentrationPlasma_Vascular. 		Value Origin
nitial concentration	Organism	VenousBlood	BloodCells	CYP3A4					 InitialConcentrationBloodCells (RC *. 		
Initial concentration	Organism	ArteriaBlood	Plasma	CYP3A4					 InitialConcentrationPlasma_Vascular. 		
Initial concentration	Organism	ArteriaBlood	BloodCells	CYP3A4					 InitialConcentrationBloodCells (RC *. 		
initial concentration	Organism	Bone	Plasma	CYP3A4					 InitialConcentrationPlasma ((f_vas *. 		
nitial concentration	Organism	The Edit Protein Expression					ı ×		 InitialConcentrationBloodCells (RC *. 		
raction expressed interstitial	Organism	ag Europoten Expression				L.	· ^		PARAM f exp interstitial (1 - f ex		
nitial concentration	Organism	The Protein Selection Repression Data	Analysis = Data Transfer Overview						 InitialConcentrationInterstitial ((f_in. 		
telative expression	Organism				<u></u>		_) <not available=""></not>	Fraction	
raction expressed intracellular	Organism	Array	⊖ EST		O RT-PCR				O <not available=""></not>	Fraction	
nitial concentration	Organism	PK-Sim Organ		 Relative E 	Expression Value				 InitialConcentrationIntracellular (RC. 		
nitial concentration	Organism	🐠 Blood Cells					^		 InitialConcentrationEndosome (f_en. 		
nitial concentration	Organism	🌮 Bone			0.05				InitialConcentrationPlasma ((f_vas *)		
nitial concentration	Organism	🧠 Brain			0.04				InitialConcentrationBloodCells (RC *.		
raction expressed interstitial	Organism	😂 Cecum							 PARAM_f_exp_interstitial (1 - f_ex 	Fraction	
nitial concentration	Organism	Colon Ascendens			0.07				 InitialConcentrationInterstitial ((f_in. 		
telative expression	Organism	Colon Descendens / Distal Colon 1			0.07				Not Available>	Fraction	
raction expressed intracellular	Organism	Colon Sigmoid / Distal Colon 2			0.07			1.0	O <not available=""></not>	Fraction	
nitial concentration	Organism	💭 Colon Transversum			0.07			<not available<="" td=""><td>InitialConcentrationIntracellular (RC.</td><td>Concentration (molar)</td><td></td></not>	InitialConcentrationIntracellular (RC.	Concentration (molar)	
initial concentration	Organism	State Duodenum			0.40			<not available:<="" td=""><td>InitialConcentrationEndosome (f_en.</td><td>Concentration (molar)</td><td></td></not>	InitialConcentrationEndosome (f_en.	Concentration (molar)	
initial concentration	Organism	Sec. Fat						<not available:<="" td=""><td>InitialConcentrationPlasma ((f_vas *</td><td> Concentration (molar)</td><td></td></not>	InitialConcentrationPlasma ((f_vas *	Concentration (molar)	
nitial concentration	Organism	💇 Gonads			0.03			<not available:<="" td=""><td>InitialConcentrationBloodCells (RC *.</td><td>Concentration (molar)</td><td></td></not>	InitialConcentrationBloodCells (RC *.	Concentration (molar)	
Fraction expressed interstitial	Organism	🐞 Heart			0.04			<not available:<="" td=""><td>PARAM_f_exp_interstitial (1 - f_ex</td><td>Fraction</td><td></td></not>	PARAM_f_exp_interstitial (1 - f_ex	Fraction	
nitial concentration	Organism	Kidney			0.04			<not available<="" td=""><td>InitialConcentrationInterstitial ((f_in.</td><td>Concentration (molar)</td><td></td></not>	InitialConcentrationInterstitial ((f_in.	Concentration (molar)	
telative expression	Organism	🔯 Large Intestine			0.07				O <not available=""></not>	Fraction	
raction expressed intracellular	Organism	🗭 Liver Pericentral			1.00			1.0	O <not available=""></not>	Fraction	
nitial concentration	Organism	Liver Periportal			1.00			<not available<="" td=""><td>InitialConcentrationIntracellular (RC.</td><td>Concentration (molar)</td><td></td></not>	InitialConcentrationIntracellular (RC.	Concentration (molar)	
nitial concentration	Organism	😻 Lower Ileum			0.40		- 1	<not available<="" td=""><td>InitialConcentrationEndosome (f_en.</td><td>Concentration (molar)</td><td></td></not>	InitialConcentrationEndosome (f_en.	Concentration (molar)	
nitial concentration	Organism	😻 Lower Jejunum			0.40			<not available:<="" td=""><td> InitialConcentrationPlasma ((f_vas * </td><td> Concentration (molar)</td><td></td></not>	 InitialConcentrationPlasma ((f_vas * 	Concentration (molar)	
nitial concentration	Organism	- Sect.						<not available:<="" td=""><td> InitialConcentrationBloodCells (RC *. </td><td>Concentration (molar)</td><td></td></not>	 InitialConcentrationBloodCells (RC *. 	Concentration (molar)	
raction expressed interstitial	Organism				Previous	; OK 🥑 Cano	el 😢	<not available:<="" td=""><td>PARAM_f_exp_interstitial (1 - f_ex</td><td>Fraction</td><td></td></not>	PARAM_f_exp_interstitial (1 - f_ex	Fraction	
nitial concentration	Organism							<not available:<="" td=""><td>InitialConcentrationInterstitial ((f_in.</td><td>Concentration (molar)</td><td></td></not>	InitialConcentrationInterstitial ((f_in.	Concentration (molar)	
Relative expression	Organism	Gonads	Intracellular	CYP3A4					O <not available=""></not>	Fraction	
raction expressed intracellular	Organism	Gonads	Intracellular	CYP3A4				1.0	O <not available=""></not>	Fraction	
nitial concentration	Organism	Gonads	Intracellular	CYP3A4				<not available<="" td=""><td> InitialConcentrationIntracellular (RC. </td><td>Concentration (molar)</td><td></td></not>	 InitialConcentrationIntracellular (RC. 	Concentration (molar)	
nitial concentration	Organism	Gonads	Endosome	CYP3A4				<not available<="" td=""><td> InitialConcentrationEndosome (f_en. </td><td>. Concentration (molar)</td><td></td></not>	 InitialConcentrationEndosome (f_en. 	. Concentration (molar)	
itial concentration	Organism	Heart	Plasma	CYP3A4				<not available<="" td=""><td> InitialConcentrationPlasma ((f_vas * </td><td> Concentration (molar)</td><td></td></not>	 InitialConcentrationPlasma ((f_vas * 	Concentration (molar)	
nitial concentration	Organism	Heart	BloodCells	CYP3A4					 InitialConcentrationBloodCells (RC *. 	. Concentration (molar)	
raction expressed interstitial	Organism	Heart	Interstitial	CYP3A4					PARAM_f_exp_interstitial (1 - f_ex	Fraction	
nitial concentration	Organism	Heart	Interstitial	CYP3A4					 InitialConcentrationInterstitial ((f_in. 	Concentration (molar)	
elative expression	Organism	Heart	Intracellular	CYP3A4					0 <not available=""></not>	Fraction	
raction expressed intracellular	Organism	Heart	Intracellular	CYP3A4					0 <not available=""></not>	Fraction	
nitial concentration	Organism	Heart	Intracellular	CYP3A4					 InitialConcentrationIntracellular (RC. 		
nitial concentration	Organism	Heart	Endosome	CYP3A4					 InitialConcentrationEndosome (f_en. 		
initial concentration	Organism	Kidney	Plasma	CYP3A4					InitialConcentrationPlasma ((f_vas *		
nitial concentration	Organism	Kidney	BloodCells	CYP3A4				<not available:<="" td=""><td> InitialConcentrationBloodCells (RC *. </td><td>Concentration (molar)</td><td></td></not>	 InitialConcentrationBloodCells (RC *. 	Concentration (molar)	

Examples of combination

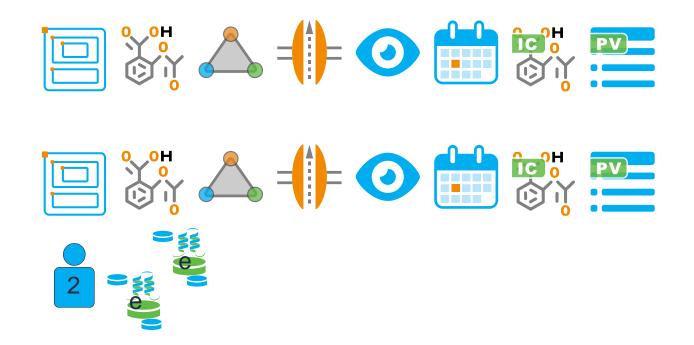


CompoundA

CompoundB

30 years old male Normal metabolizer

Examples of combination

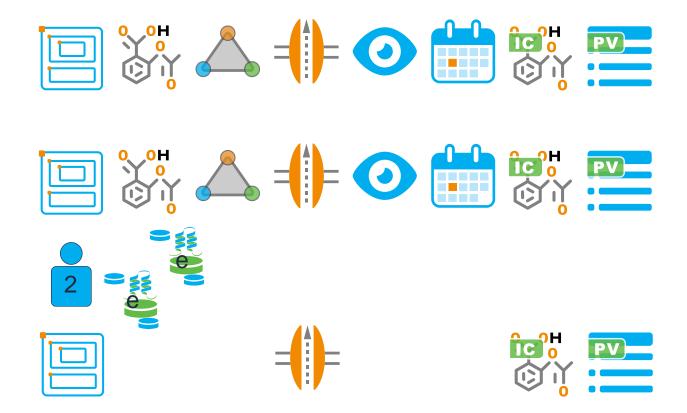


CompoundA

CompoundB

31 years old female Extensive metabolizer

Examples of combination

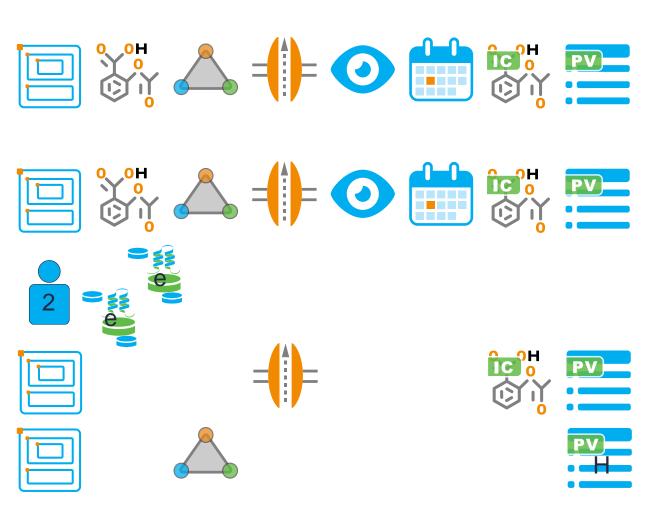

CompoundA

CompoundB

31 years old female Extensive metabolizer

Examples of combination

CompoundA



CompoundB

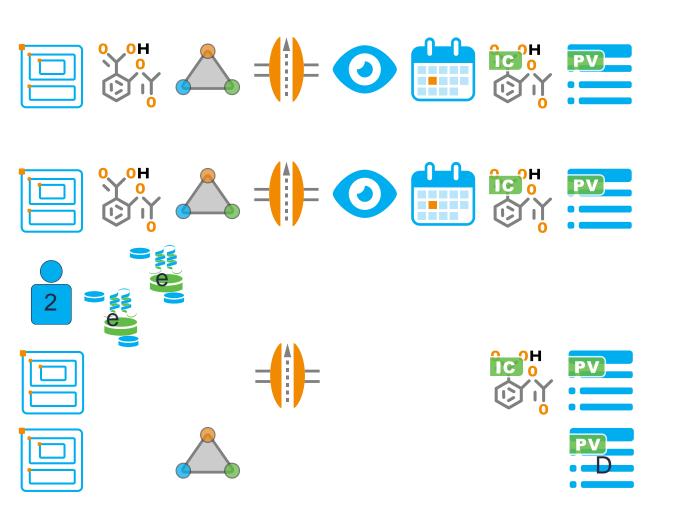
31 years old female Extensive metabolizer

Pregnancy

CompoundA effect model Healthy population

Examples of combination

CompoundA



CompoundB

31 years old female Extensive metabolizer

Pregnancy

CompoundA effect model Disease population

Use case

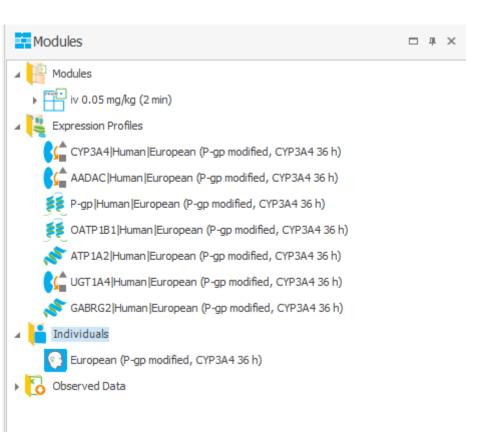
○ Pregnancy model

- \odot How to implement pregnancy as a module?
- Based on PBPK model by Dallmann et al. <u>https://github.com/Open-Systems-Pharmacology/Pregnancy-Models</u>
- Goal: a module that can be used with any PBPK model with minimal changes!

- General approach implement all changes as separate modules, not within the PK-Sim modules
- Add new structures (e.g., organs) or overwrite existing structures (e.g., volume parameters of organs)
- \odot Increasing complexity can be implemented as modules building upon each other

The here presented modules are available on GitHub! https://github.com/PavelBal/Pregnancy-Models/tree/v12_Modules

PavelBal Added pregnancy modules	1a9do	ce6 · 1 minute ago 🕚 56 Commits
CotyledonPerfusionModel	Adds in silico cotyledon perfusion model and upo	dates READ 3 years ago
Models	Adds acetaminophen pkml files	3 years ag
Modules	Added pregnancy modules	1 minute ag
ModelStructure.png	Corrected figure	3 years ag
MoleculeBB_FetalFractionUnbound.png	Updated README	3 years ag
README.md	Added pregnancy modules	1 minute ag


Experimental module-based implementation for OSPS version 12

This branch contains an experimental implementation of the pregnancy model as extension modules utilizing the modularization concept implemented in Version 12 of the OSP software. As the software is still in development, this implementation cannot be considered as a final one.

Physiologically Based Pharmacokinetic Models for

Extending a PBPK model

Develop a PBPK model in PK-Sim (example – Midazolam)
 Send the model to PK-Sim

Extending a PBPK model

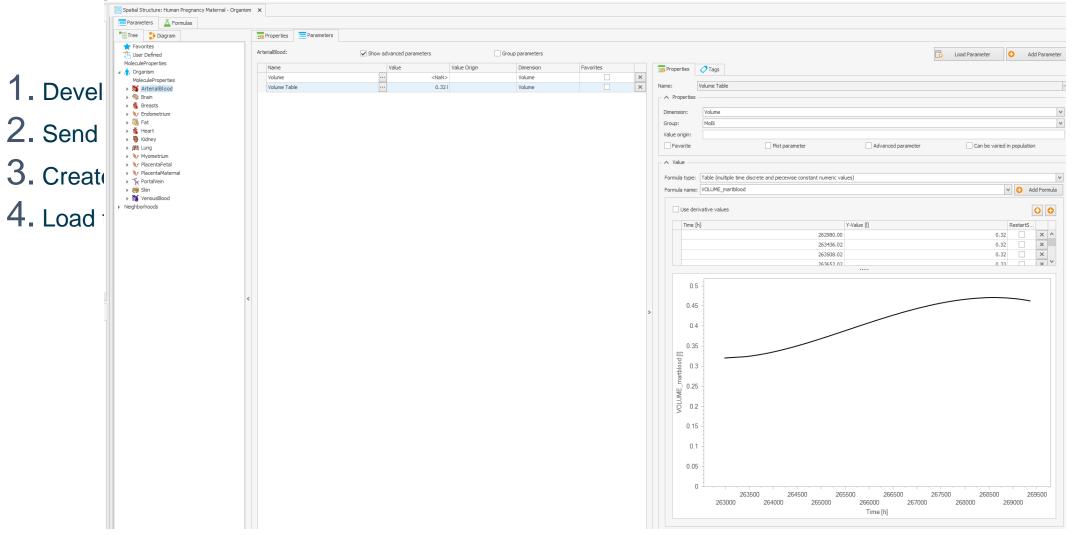
Develop a PBPK model in PK-Sim (examp
 Send the model to PK-Sim
 Create a pregnant individual

Population Properti	2S					^		
Species:	💽 Human				~			
Population: Pregnant (Dallmann et al. 2017)								
Gender:	Female							
Calculation method	Endothelial surface areas		Organ vascularization		~			
Calculation method	Body surface area		Mosteller		\checkmark			
Individual Paramete	ers							
Age: 30.	00		year(s)	\sim				
Weight: 60.	00		kg	~	Mean			
Height: 163	.00		cm	\sim	Thean t			
BMI: 22.	58		kg/m²	\sim				
Value origin:								
						~		

Extending a PBPK model

Develop a PBPK model in PK-Sim (example – Midazolam)
 Send the model to PK-Sim
 Create a pregnant individual
 Load the pregnancy modules

Extending a PBPK model

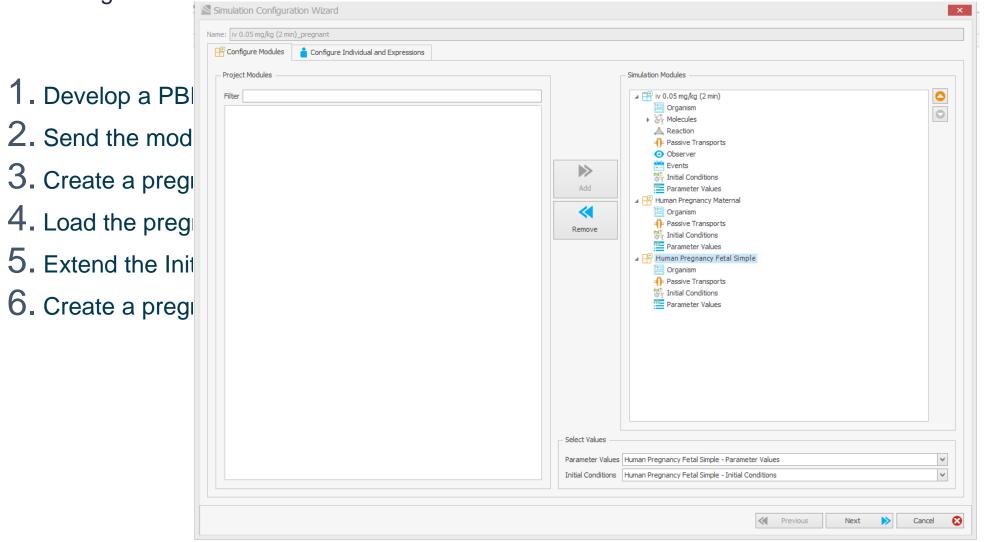

Develop a PBPK r
 Send the model to
 Create a pregnant
 Load the pregnant

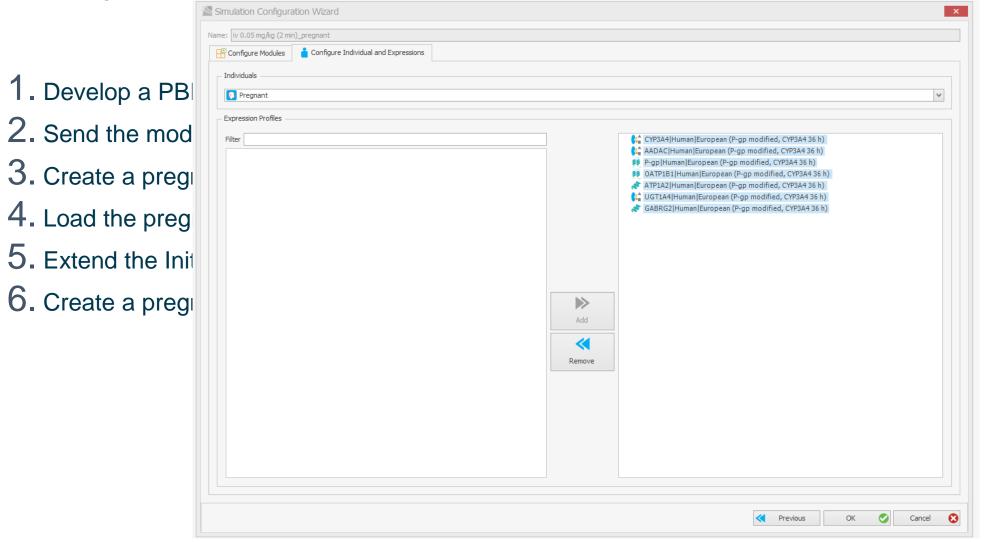
	📔 Spatial Structur	e: Human Pr	egnancy N	Maternal -	- Organism	x						
	Parameters	- Formu	las									
a PBPK r	Tree 🏮	Diagram		Trop	perties	Parame	ters	S				
e model tc	★ Favorites			Organism: Show advanced parameters Group parameters								
nrogood	Oregnant MoleculeProperties MoleculeProperties			Nan	me			Value	Value Origin	Dimension	Favorites	
a pregnam				Hen	matocrit			<nan></nan>	<nan> Di</nan>			х
	Arterial		Hen	matocrit Ta	ble		0.41	0.41 Dime			x	
e pregnan	🕨 🧠 Brain		Mat	ternal Age			<nan></nan>		Time		x	
	🕨 🧯 Breasts			Mea	anBW			<nan></nan>		Mass		x
	🕨 🕨 Endome	etrium		Mea	anBW Tabl	e		60.00 kg		Mass		x
	🕨 🍓 Fat			Volume (plasma)			<nan></nan>		Volume		x	
	 Kidney 			Weight	-			<nan></nan>	? Unknown	Mass		x
				Weight of blood organs			<nan></nan>		Mass		x	
	Mung	trium				_		<nan></nan>				x
		 Wyometrium W PlacentaFetal 			-	-		<nan></nan>		Mass		x
	 V Placent 		<	we	eight_mate	nal		<ingline></ingline>		MdSS		^
	PortalVe											
	🕨 🎆 Skin											

VenousBlood

Neighborhoods

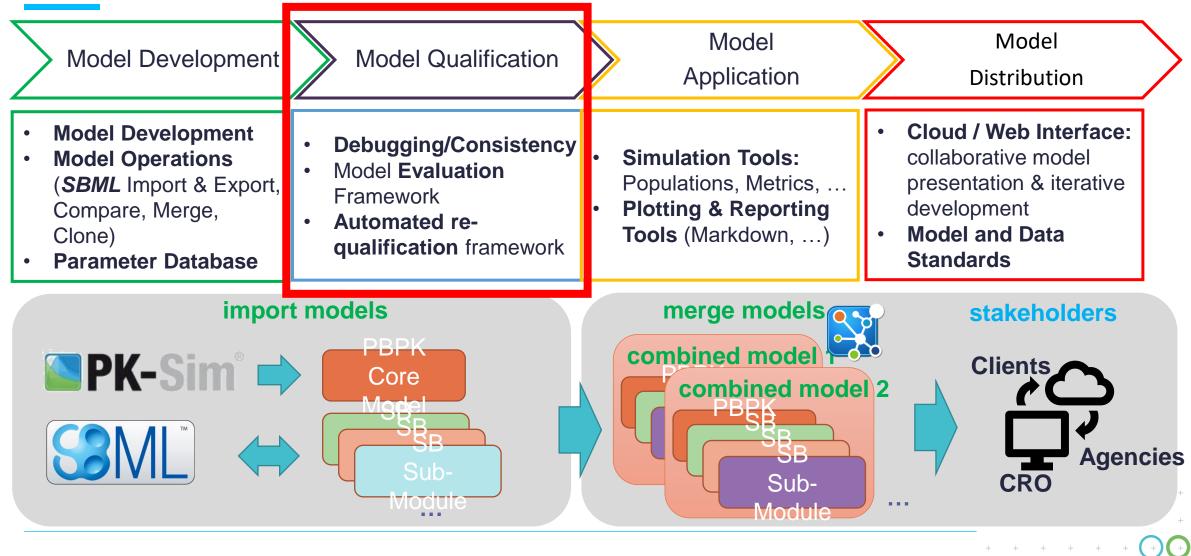
- 1. Develop a PBPK model in PK-Sim (example Midazolam)
- 2. Send the model to PK-Sim
- 3. Create a pregnant individual
- 4. Load the pregnancy modules
- 5. Extend the Initial Conditions


	_
Extending a	Spat
	Mole
1	
1. Develop a	
2. Send the	
2	
3. Create a	
1	
4. Load the	
5. Extend th	

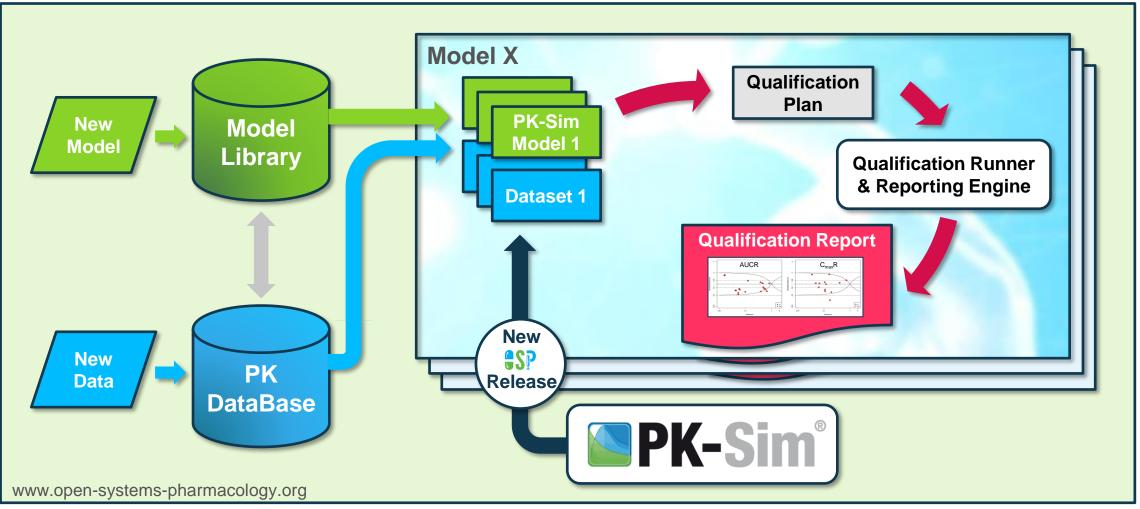

		structure and molecules	<
Select a	spauai		•
Spatial struct	ture: 🗐	uman Pregnancy Maternal - Organism	
Molecules:			
		Molecule	
		mg/kg (2 min) - Molecules	
		۲۰۰۰ ۲۷۶۵۹ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	
		AADAC	
	_	P-gp	
		OATP1B1	
	-	ATP1A2	
		Kr 182 Kr 182 Kr 182	
		S GABRG2	
		Midazolam	
		Midazolam-CYP3A4-Optimized Metabolite	
		Midazolam-UGT1A4-Optimized Metabolite	
		Midazolam-GABRG2-Buhr 1997 Complex	
The buildin	na block	will be extended with new values for selected <i>molecules</i> in all physical containers in the selected <i>spatial structure</i>	
	ig block	while extended that her values for selected <i>molecules</i> in an physical containers in the selected spatial strattare	
		OK 🔿 Cancel 📢	3

- 1. Develop a PBPK model in PK-Sim (example Midazolam)
- 2. Send the model to PK-Sim
- 3. Create a pregnant individual
- 4. Load the pregnancy modules
- 5. Extend the Initial Conditions
- 6. Create a pregnant simulation

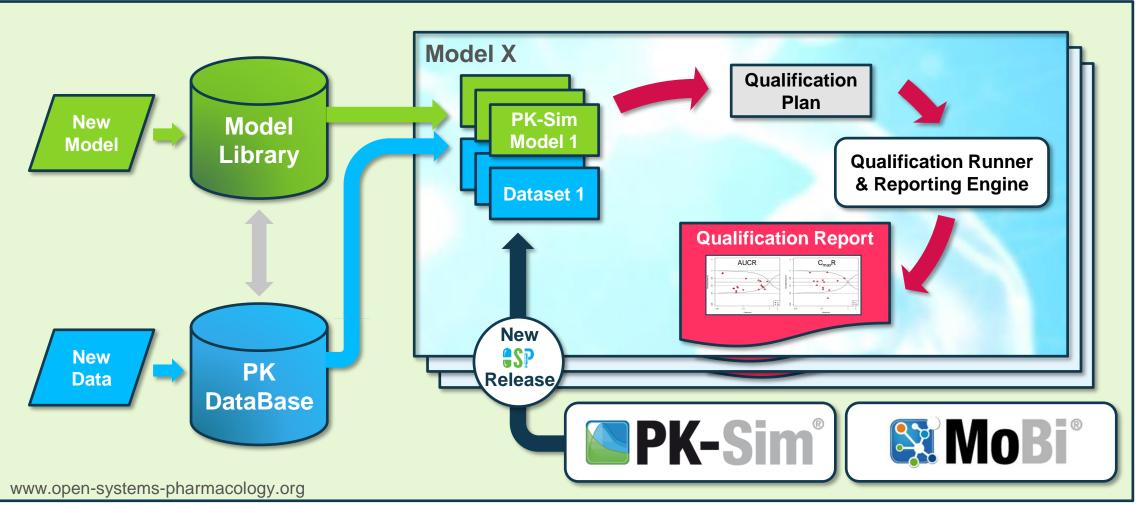
- 1. Develop a PBPK model in PK-Sim (example Midazolam)
- 2. Send the model to PK-Sim
- 3. Create a pregnant individual
- 4. Load the pregnancy modules
- 5. Extend the Initial Conditions
- 6. Create a pregnant simulation
- 7. Simulate!



QSP model qualification Outlook


The Future QSP Platform Management: Modularization

Workflow for Development, Qualification & Delivery


Platform Qualification: Automatic (Re)-qualification Workflow

Sustainable and Agile (Re)-Qualification of Intended Use Scenarios for Regulatory Submissions

Platform Qualification: Automatic (Re)-qualification Workflow

Sustainable and Agile (Re)-Qualification of Intended Use Scenarios for Regulatory Submissions

Platform Qualification

QSP model snapshot

\odot Key aspect is the MoBi project snapshot

- PK-Sim modules snapshot(s)
- $\odot\,$ Extension modules as pkml
- \odot Observed data
- Model configurations & models
 - $\,\odot\,$ List of all user-defined (parameter) values

\odot RQ Workflow:

- Re-create PK-Sim modules
- Re-create model configurations & models
- \odot Apply user-defined values
- $\,\odot\,$ Simulate and compare to observed data
- Create Qualification Report

Try v12 now!

The first public beta of Version 12 has just been released!

Get it here:

<u>https://github.com/Open-Systems-</u> Pharmacology/Suite/releases/tag/v12.0_beta1

Getting started with OSMOSES:

<u>https://github.com/Open-Systems-</u> <u>Pharmacology/OSMOSES/blob/develop/Documentation/</u> <u>Getting%20Started.md</u>

we empower life sciences

Thank you!

Pavel Balazki